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Abstract. Node-on-segment contact is the most common form of contact used today but
has many deficiencies ranging from potential locking to non-smooth behavior with large
sliding. Furthermore, node-on-segment approaches are not at all applicable to higher or-
der discretizations (e.g. quadratic elements). In a previous work, [3, 4] we developed
a segment-to-segment contact approach for eight node hexahedral elements based on the
mortar method that was applicable to large deformation mechanics. The approach proved
extremely robust since it eliminated the over-constraint that caused ”locking” and provided
smooth force variations in large sliding. Here, we extend this previous approach to treat
frictional contact problems. In addition, the method is extended to 3D quadratic tetra-
hedrals and hexahedrals. The proposed approach is then applied to several challenging
frictional contact problems that demonstrate its effectiveness.
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1 INTRODUCTION

Contact surfaces have been a very integral aspect of non-linear solid mechanics model-
ing for some time now. Nonetheless, it still remains one of the most challenging aspects of
implicit structural mechanics and despite the research in the area, reliable and accurate
algorithms are still not readily available. The most prominent algorithm for doing flex-
ible body contact problems where there is large sliding is the node-on-segment contact
algorithm developed by Hallquist [1]. This algorithm was developed for low order ele-
ments such as trilinear bricks and linear tetrahedrals and has numerous deficiencies such
as locking, patch test failure and non-smooth behavior with large sliding that have been
well documented in numerous papers [3, 4]. This standard version of node-on-segment is
not applicable at all for quadratic elements since it performs so poorly in patch tests [2]

In this paper, the mortar method for large deformation solid mechanics presented in [3]
and the frictional version in [4] is extended to treat quadratic elements. A standard appli-
cation of the mortar method to quadratic elements would apply the slave side quadratic
interpolation fields to interpolate the pressure fields. This is seen to work fine for mesh
tying but, in the context of the mortar implementation given in [3], this will result in
inconsistencies with the Kuhn Tucker conditions for the gap definitions. Of course one
could modify the quadratic fields by using hierarchical versions but this may be unnec-
essary. Instead, it is seen that a linear interpolated stress fields are very effective and
retain optimal convergence in spatial discretization error. In fact, by basing the linear in-
terpolation fields on the corner nodes of the quadratic elements i.e. bilinear interpolation
for twenty and twenty seven node hexahedrals and linear interpolation of the ten node
tetrahedral, two pass contact can be applied such that no locking occurs.

An outline for this paper is as follows. In Section 1, a short description of the mortar
implementation presented in [3, 4] is given. In addition, a short explanation of the exten-
sion to quadratic elements is provided. In section 2, a brief description of the numerical
integration scheme is provided. Several numerical results are presented in Section 3.

2 Mortar Method Implementation

The classic mortar methods use the interpolation space of the non-mortar or slave side
to interpolate the contact tractions. The n1 nodes on the slave side define the interpolation
from the displacement field shape functions denoted N1

A The opposing surface is defined
as the mortar or master side composed of n2 nodes and displacement shape functions
denoted N2

B . Variations on this classical scheme are not unusual and are used here. The
contact traction can be separated into normal tN and frictional tF parts where ν is some
surface normal such that

t = tN + tF (1)

tN = p ν tF · ν = 0
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The contact tractions are then interpolated

tN =
ñ1∑

A=1

Ñ1
A(ξ1)pAνA tF =

ñ1∑
A=1

Ñ1
A(ξ1)tA (2)

where pA is a nodally defined pressure, νA is a nodally averaged normal, tA is the nodally
defined frictional force where tA · νA = 0, ñ1 is the number of nodes on the slave side
defining the pressure discretization and Ñ1

A are the shape functions that define the type
of discretization. In this work, three different interpolation schemes where exploited for
the quadratic element implementation. The first just uses the slave side quadratic shape
functions N1

A so that Ñ1
A = N1

A and n1 is just the number of nodes on the slave side.
So for example, twenty seven node elements provide nine node patches with the usual
two dimensional Lagrange shape functions defining the interpolation over the patch. The
second scheme just uses the corner nodes of the quadratic patches. This would use a
bilinear interpolation for the nine node and eight node patches and a linear patch for the
six node patch seen in Figure 1. The third scheme interpolates the pressure piecewise
over the nine, six and eight node patches. Referring to Figure 1, four bilinear patches
define the pressure piecewise over the nine node patch, three linear patches are used to
define the pressure over the six node patch and four linear and one bilinear patch are
used over the eight node patch. For the second scheme, there about half as many contact
constraints as there are nodes on the slave side. Consequently, it was found that a two
pass application could be applied such that pressures where defined on both sides of the
mesh and no locking occurs.

As presented in [3], the discrete normal contact gap gA defined

gA = νA · gA (3)

gA =
n1∑
B

n1
ABx1

B −

n2∑
C

n2
ACx2

C (4)

and pressure pA are the basis for the discrete form of the Kuhn Tucker conditions defined
on the the non-mortar nodes A

gA ≤ 0, pA ≥ 0, pAgA = 0 ∀A = 1, ñ1 (5)

The contact weight values are given

ni
AB =

∫
γ

N1
A(ξ̃

1
)N i

B(ξ̃
i
) dγ (6)

A brief description of the process used to numerically integrate (6) is given in the next
Section.
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The contact slip increment is given [4]

∆sA = (I − νA ⊗ νA)

n1,n2∑
B,C

[(n1
AB(tn+1) − n1

AB(tn)) x1
B(tn)− (7)

(n2
AC(tn+1) − n2

AC(tn)) x2
C(tn)]

Using (7), the discrete Coloumb frictional Kuhn Tucker constraints are then given

φA = µ pA − ||tA|| ≥ 0, ∆sA = ζA tA, ζA ≥ 0, φA ζA = 0 ∀A = 1, ñ1 (8)

where µ is the Coulomb coefficient of friction. In this implementation, contact forces are
evolved using a penalty regularization and a Uzawa version of the augmented Lagrange
approach. Gap and slip distances can then be enforced to tight tolerances.

3 Numerical integration

The numerical integration of (6) is discussed in detail in [3]. It is also shown that
care must be taken in the integration scheme such that momentum across the interface
is conserved exactly. In the quadratic version of the integration scheme, the patches
in Figure 1 are subdivided into bilinear and linear segments. These then become the
segments over which integration of (6) is made. So for example, if the slave side was
discretized using twenty node hexahedrals such that there were 100 eight node patches,
the approach would subdivide the surface into 500 slave side (400 triangular and 100
quadrilateral) contact segments. The master side could be discretized using ten node
tetrahedrals that would result in 300 master side segments. The algorithm given in [3]
is then applied to integrate the contact segments. In short, for each slave segment k, a
nearby candidate master segment l is found by rough search. The master segment l is
then projected onto the slave segment k as shown pictorially in Figure 2. The intersected
area is then discretized into triangles and (6) is integrated using Gauss-Radau integration
rules.

4 Examples

4.1 Optimal Convergence

An internally pressurized thick sphere composed of twenty node hexahedrals is used to
demonstrate optimal convergence for a 3D mesh with a curved tied dissimilar interface.
The coarsest mesh is shown in Figure 3 and the effective stress is shown to vary smoothly.
In Figure 4, the energy norm of the error is plotted for the thick sphere and demonstrates
optimal convergence (slope = 2) for the different integration schemes: bilinear (scheme
2), two pass bilinear and a conforming mesh. Although not shown in Figure 4, scheme 1
and scheme 3 also produced similar errors to scheme 2 and converged optimally.
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4.2 Large bending: locking free behavior

This example applies an external pressure uniformly over the exterior of a plane strain
cantilever beam mesh such that a large pressure is experienced at the dissimilar contact
interface. A bending moment is then applied to the beam such that it experiences large
bending (Figure 5). The beam is composed of twenty seven node hexahedrals and friction
is included at the interface. Our results (Figure 5) demonstrate that the two pass bilinear
does not lock although there can be pressure modes that can exist on the interface. The
final tip displacements for the one pass and two pass bilinear interpolation are within
0.5% of the conforming mesh result.

4.3 Large sliding: smooth results

This example demonstrates the superior response by mortar contact compared to node-
on-segment contact in the event that nodes slide off contact surface boundaries. Two cubes
are stacked vertically and are separated by a contact surface along a dissimilar interface.
A vertical displacement is imposed on the top of the top block such that the blocks
are uniformly compressed. The homogenous field is recovered exactly within machine
precision since the formulation satisfies the patch test when the element segments are
affine. The top of the top block is then displaced horizontally such that the top block
first sticks due to friction and then eventually slips as seen in Figure 6. The left vertical
face of the bottom block was fixed so that it would resist the frictional force. The results
in Figure 6 were produced by a mesh composed of twenty seven node elements with two
pass bilinear interpolated contact. Eight node elements were also used on a refined mesh
such that twice as many elements were used per side (a factor of eight more overall). The
vertical force versus horizontal displacement is shown plotted in Figure 7 for several cases:

1. two pass bilinear mortar contact applied (27 node hex mesh)

2. one pass bilinear mortar contact with lower surface as the slave (27 node hex mesh)

3. one pass bilinear mortar contact with upper surface as the slave (27 node hex mesh)

4. one pass bilinear mortar contact with lower surface as the slave (8 node hex mesh)

5. two pass node-on-segment contact (8 node hex mesh)

6. one pass node-on-segment contact with lower surface as the slave (8 node hex mesh)

From Figure 7 it is seen that results from cases 1,2 and 4 nearly overlap. Results
from case 3 are just slightly softer. As expected, the node-on-segment results in cases
5 and 6 were not smooth , this is particularly true for the one pass case. Convergence
was not attainable within fifty Newton iterations for several time steps with the two pass
analysis yet the analysis was allowed to proceed. These hard points occurred at the spikes
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in Figure 7. The one pass results blew up less than half way through the run and the
analysis was halted.

5 Conclusion

A mortar frictional contact method [3, 4] was extended to treat quadratic elements.
Several different pressure interpolations were considered. In fact a two pass bilinear
interpolation scheme was proposed that doesn’t encounter any locking although does
posses pressure modes. These modes were not deleterious for the penalty regularized
augmented Lagrange solution procedure but would need to be stabilized in the event
that a direct Lagrange multiplier method was applied. The proposed method was shown
to achieve full quadratic convergence in the energy of error for an internally pressurized
sphere. Furthermore, the method was shown to be more robust than the node-on-segment
approach in general.
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Figure 1: Division of quadratic patches into contact segments: (a) quadratic nine node patch (b) four
quadrilateral segments (c) quadratic six node patch (d) three linear triangle segments (e) serendipity
eight node patch (f) four linear triangle segments and one quadrilateral patch.
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Figure 2: (a) Rough search identifying candidate master segment l for projection onto slave segment k.
(b) Master segment l, slave segment k and plane P formed from the center point and normal n of k. (c)
Facet k̃ and l̃ formed by projecting k and l onto plane. (c) Polygon formed from clipping algorithm. (d)
Discretization of polygon into np triangular pallets.

Figure 3: Effective stress plotted for coarsest pressurized sphere mesh where one pass bilinear mortar
(scheme 2) was used. Mesh tying and not unilateral contact was used at the dissimilar interface.
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Figure 4: Plot of the energy norm of the error for internally pressurized sphere. Results are plotted for
one pass bilinear mortar (scheme2) with coarse side and fine side as slave, two pass mortar and conforming
mesh.

Figure 5: Bending example. Results shown from analysis using two pass bilinear interpolation.
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Figure 6: Blocks loaded compressively and then slide horizontally.

Figure 7: Vertical force versus horizontal displacement for sliding blocks example.
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